sagemath_symbolics: Symbolic calculus¶
This pip-installable distribution passagemath-symbolics
is a distribution of a part of the Sage Library.
It provides a small subset of the modules of the Sage library (“sagelib”, passagemath-standard
).
What is included¶
Pynac (fork of GiNaC)
Arithmetic Functions, Elementary and Special Functions (via sagemath-categories)
SageManifolds: Topological, Differentiable, Pseudo-Riemannian, Poisson Manifolds
Examples¶
Using SageManifolds:
$ pipx run --pip-args="--prefer-binary" --spec "passagemath-symbolics[test]" ipython
In [1]: from sage.all__sagemath_symbolics import *
In [2]: M = Manifold(4, 'M', structure='Lorentzian'); M
Out[2]: 4-dimensional Lorentzian manifold M
In [3]: X = M.chart(r"t r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi")
In [4]: t,r,th,ph = X[:]; m = var('m'); assume(m>=0)
In [5]: g = M.metric(); g[0,0] = -(1-2*m/r); g[1,1] = 1/(1-2*m/r); g[2,2] = r**2; g[3,3] = (r*sin(th))**2; g.display()
Out[5]: g = (2*m/r - 1) dt⊗dt - 1/(2*m/r - 1) dr⊗dr + r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph
In [6]: g.christoffel_symbols_display()
Out[6]:
Gam^t_t,r = -m/(2*m*r - r^2)
Gam^r_t,t = -(2*m^2 - m*r)/r^3
Gam^r_r,r = m/(2*m*r - r^2)
Gam^r_th,th = 2*m - r
Gam^r_ph,ph = (2*m - r)*sin(th)^2
Gam^th_r,th = 1/r
Gam^th_ph,ph = -cos(th)*sin(th)
Gam^ph_r,ph = 1/r
Gam^ph_th,ph = cos(th)/sin(th)
Available as extras, from other distributions¶
pip install "passagemath-symbolics[giac]"
Computer algebra system Giac, via passagemath-giac
pip install "passagemath-symbolics[primecount]"
Prime counting function implementation primecount, via primecountpy
pip install "passagemath-symbolics[sympy]"
Python library for symbolic mathematics / computer algebra system SymPy
pip install "passagemath-symbolics[plot]"
Plotting facilities
Type¶
standard
Dependencies¶
Version Information¶
package-version.txt:
10.6.3
version_requirements.txt:
passagemath-symbolics ~= 10.6.3.0
Equivalent System Packages¶
(none known)