Hochschild lattices¶
Hochschild lattices were defined in [Cha2020] as posets and shown to be congruence uniform lattices in [Com2021].
The name comes from the Hochschild polytopes introduced by Sanebdlidze in [San2009] for the study of free loop spaces in algebraic topology. The Hasse diagram of the Hochschild lattice is an orientation of the 1-skeleton of the Hochschild polytope.
For \(n \geq 1\), the cardinality of the Hochschild lattice \(H_n\) is \(2^{n - 2} \times (n + 3)\), starting with \(2, 5, 12, 28, 64, 144, 320, 704, 1536, 3328, 7168, 15360, \ldots\).
The underlying set of \(H_n\) consists of some words in the alphabet \((0,1,2)\), whose precise description can be found in [Com2021].
- sage.combinat.posets.hochschild_lattice.hochschild_fan(n)[source]¶
Return Saneblidze’s fan for the Hochschild polytope.
The dual polytope is obtained from a standard simplex by a sequence of truncations.
EXAMPLES:
sage: # needs sage.geometry.polyhedron sage: from sage.combinat.posets.hochschild_lattice import hochschild_fan sage: F = hochschild_fan(4); F Rational polyhedral fan in 4-d lattice N sage: F.f_vector() (1, 11, 39, 56, 28)
>>> from sage.all import * >>> # needs sage.geometry.polyhedron >>> from sage.combinat.posets.hochschild_lattice import hochschild_fan >>> F = hochschild_fan(Integer(4)); F Rational polyhedral fan in 4-d lattice N >>> F.f_vector() (1, 11, 39, 56, 28)
- sage.combinat.posets.hochschild_lattice.hochschild_lattice(n)[source]¶
Return the Hochschild lattice \(H_n\).
INPUT:
\(n \geq 1\) – an integer
The cardinality of \(H_n\) is \(2^{n - 2} \times (n + 3)\).
EXAMPLES:
sage: P = posets.HochschildLattice(5); P Finite lattice containing 64 elements sage: P.degree_polynomial() x^5 + 9*x^4*y + 22*x^3*y^2 + 22*x^2*y^3 + 9*x*y^4 + y^5
>>> from sage.all import * >>> P = posets.HochschildLattice(Integer(5)); P Finite lattice containing 64 elements >>> P.degree_polynomial() x^5 + 9*x^4*y + 22*x^3*y^2 + 22*x^2*y^3 + 9*x*y^4 + y^5
- sage.combinat.posets.hochschild_lattice.hochschild_simplicial_complex(n)[source]¶
Return a simplicial complex related to the Hochschild lattice \(H_n\).
This is a pure spherical simplicial complex, whose flip graph is isomorphic to the Hasse diagram of \(H_n\).
See also
EXAMPLES:
sage: # needs sage.geometry.polyhedron sage: C = simplicial_complexes.HochschildSphere(3); C Simplicial complex with 8 vertices and 12 facets sage: H = C.flip_graph() sage: P = posets.HochschildLattice(3) sage: H.is_isomorphic(P.hasse_diagram().to_undirected()) True
>>> from sage.all import * >>> # needs sage.geometry.polyhedron >>> C = simplicial_complexes.HochschildSphere(Integer(3)); C Simplicial complex with 8 vertices and 12 facets >>> H = C.flip_graph() >>> P = posets.HochschildLattice(Integer(3)) >>> H.is_isomorphic(P.hasse_diagram().to_undirected()) True