Littlewood-Richardson tableaux

A semistandard tableau is Littlewood-Richardson with respect to the sequence of partitions \((\mu^{(1)},\ldots,\mu^{(k)})\) if, when restricted to each alphabet \(\{|\mu^{(1)}|+\cdots+|\mu^{(i-1)}|+1, \ldots, |\mu^{(1)}|+\cdots+|\mu^{(i)}|-1\}\), is Yamanouchi.

AUTHORS:

  • Maria Gillespie, Jake Levinson, Anne Schilling (2016): initial version

class sage.combinat.lr_tableau.LittlewoodRichardsonTableau(parent, t)[source]

Bases: SemistandardTableau

A semistandard tableau is Littlewood-Richardson with respect to the sequence of partitions \((\mu^{(1)}, \ldots, \mu^{(k)})\) if, when restricted to each alphabet \(\{|\mu^{(1)}|+\cdots+|\mu^{(i-1)}|+1, \ldots, |\mu^{(1)}|+\cdots+|\mu^{(i)}|-1\}\), is Yamanouchi.

INPUT:

  • t – Littlewood-Richardson tableau; the input is supposed to be a list of lists specifying the rows of the tableau

EXAMPLES:

sage: from sage.combinat.lr_tableau import LittlewoodRichardsonTableau
sage: LittlewoodRichardsonTableau([[1,1,3],[2,3],[4]], [[2,1],[2,1]])
[[1, 1, 3], [2, 3], [4]]
>>> from sage.all import *
>>> from sage.combinat.lr_tableau import LittlewoodRichardsonTableau
>>> LittlewoodRichardsonTableau([[Integer(1),Integer(1),Integer(3)],[Integer(2),Integer(3)],[Integer(4)]], [[Integer(2),Integer(1)],[Integer(2),Integer(1)]])
[[1, 1, 3], [2, 3], [4]]
check()[source]

Check that self is a valid Littlewood-Richardson tableau.

EXAMPLES:

sage: from sage.combinat.lr_tableau import LittlewoodRichardsonTableau
sage: t = LittlewoodRichardsonTableau([[1,1,3],[2,3],[4]], [[2,1],[2,1]])
sage: t.check()
>>> from sage.all import *
>>> from sage.combinat.lr_tableau import LittlewoodRichardsonTableau
>>> t = LittlewoodRichardsonTableau([[Integer(1),Integer(1),Integer(3)],[Integer(2),Integer(3)],[Integer(4)]], [[Integer(2),Integer(1)],[Integer(2),Integer(1)]])
>>> t.check()
class sage.combinat.lr_tableau.LittlewoodRichardsonTableaux(shape, weight)[source]

Bases: SemistandardTableaux

Littlewood-Richardson tableaux.

A semistandard tableau \(t\) is Littlewood-Richardson with respect to the sequence of partitions \((\mu^{(1)}, \ldots, \mu^{(k)})\) (called the weight) if \(t\) is Yamanouchi when restricted to each alphabet \(\{|\mu^{(1)}| + \cdots + |\mu^{(i-1)}| + 1, \ldots, |\mu^{(1)}| + \cdots + |\mu^{(i)}| - 1\}\).

INPUT:

  • shape – the shape of the Littlewood-Richardson tableaux

  • weight – the weight is a sequence of partitions

EXAMPLES:

sage: LittlewoodRichardsonTableaux([3,2,1],[[2,1],[2,1]])
Littlewood-Richardson Tableaux of shape [3, 2, 1] and weight ([2, 1], [2, 1])
>>> from sage.all import *
>>> LittlewoodRichardsonTableaux([Integer(3),Integer(2),Integer(1)],[[Integer(2),Integer(1)],[Integer(2),Integer(1)]])
Littlewood-Richardson Tableaux of shape [3, 2, 1] and weight ([2, 1], [2, 1])
Element[source]

alias of LittlewoodRichardsonTableau

sage.combinat.lr_tableau.is_littlewood_richardson(t, heights)[source]

Return whether semistandard tableau t is Littleword-Richardson with respect to heights.

A tableau is Littlewood-Richardson with respect to heights given by \((h_1, h_2, \ldots)\) if each subtableau with respect to the alphabets \(\{1, 2, \ldots, h_1\}\), \(\{h_1+1, \ldots, h_1+h_2\}\), etc. is Yamanouchi.

EXAMPLES:

sage: from sage.combinat.lr_tableau import is_littlewood_richardson
sage: t = Tableau([[1,1,2,3,4],[2,3,3],[3]])
sage: is_littlewood_richardson(t,[2,2])
False
sage: t = Tableau([[1,1,3],[2,3],[4,4]])
sage: is_littlewood_richardson(t,[2,2])
True
sage: t = Tableau([[7],[8]])
sage: is_littlewood_richardson(t,[2,3,3])
False
sage: is_littlewood_richardson([[2],[3]],[3,3])
False
>>> from sage.all import *
>>> from sage.combinat.lr_tableau import is_littlewood_richardson
>>> t = Tableau([[Integer(1),Integer(1),Integer(2),Integer(3),Integer(4)],[Integer(2),Integer(3),Integer(3)],[Integer(3)]])
>>> is_littlewood_richardson(t,[Integer(2),Integer(2)])
False
>>> t = Tableau([[Integer(1),Integer(1),Integer(3)],[Integer(2),Integer(3)],[Integer(4),Integer(4)]])
>>> is_littlewood_richardson(t,[Integer(2),Integer(2)])
True
>>> t = Tableau([[Integer(7)],[Integer(8)]])
>>> is_littlewood_richardson(t,[Integer(2),Integer(3),Integer(3)])
False
>>> is_littlewood_richardson([[Integer(2)],[Integer(3)]],[Integer(3),Integer(3)])
False